Mặt đường cứng sẽ tiết kiệm xăng
Các kỹ sư Học viện công nghệ Massachusetts đã lập mô hình toán học về lớp phủ trên cùng của mặt đường và đề xuất cách tiết kiệm được 3% nhiên liệu tiêu hao khi đi lại.
w6JwxJFjw7Lhu6fhu4fhuq7huq45YuG6ojpx4bqw4bunw7Vi4bqlxajhu4vhurBj4buP4bqsQcaw4buhY8Oy4bqoxrDhu6Fj4bqu4buZY+G6sHHhu5fhurBj4bulceG7m8WpY8OJacaw4buhw6IvcMSR4bqlw6LhuqJjw7Lhu6fhu4fhuq7huq45YuG6olDDteG7h+G7jWLhuqXDkuG7g8OyY+G7peG7gGPhuq7huqxjUOG7rcOyY8SQceG7m8awY8Oyd8aw4buhY8aw4buhcOG7m2PFqOG7h+G6ruG6ruG7h8OycOG6tuG6rsO14bqw4bqw4bquY+G7j2hj4bunbeG6omPFqXdjcHPGsHBj4bqw4bup4buDxrBjcOG7rcOyY8SQxqFj4bun4bu54bqiY+G6onDhuqRj4bqwxILhu5XGsGPDsuG6tMaw4buhY8Oy4bqk4buHY8Wp4buL4bqwY+G7j+G6rEHGsOG7oWPEkOG7hWPhu4/GoWPDieG6tmvhurBjw7Lhu4PDsnBj4bqwceG7l+G6sGPhu6Vx4bubxalj4buP4bqsw4HDsmPDqcOhY8awcHHhu5XGsGPhu6dx4bub4bq2Y+G6sHHhu5XhurZjcOG7h+G7qWPhu6VwcWPhu49xY+G7p2Zx4bqxY8OSd8aw4buhY+G6sMSCc8awcGPGsOG7heG6uGPhu4/hu4fGsOG7oWPhurDEguG7lcawYzpm4bqiY8OycHJjOsSC4buHxrDhuq7huqLhu6nEguG6sOG7h+G6sHHhu6nGsGMmw7Xhuq7DteG7h8SCw7JwYybDtcOy4bupxILhu43huq9jxJDhu4Vj4bqw4burxalj4bqww63hurBj4bqwxILhu5XGsGPhurDEguG7h8aw4buhY8WpZsaw4buhY8Oy4bqk4buHY8WoUTrhurHDoi/huqLhuqXDouG6sOG7h8Oz4bunw7Vj4bqu4bqw4bq44bunw7U5YsWp4buHxILhu6FxxrDDo2XhuqLDiWPhu4fhurbhurDhu6li4bqlw6LhurDEguG6pcOi4bqw4buN4bqlw6Jxxanhu6Fj4buH4bunceG7ocawOWLFqXHhu43hu43hu6fDtWJj4buH4bun4bqwOWLGr+G7l+G6tmPFqeG7i+G6sGPhu4/huqxBxrDhu6Fjw7LhuqjGsOG7oWPDsuG7q2PhurBw4budY+G7oXHhurLhuqJj4buhcWfFqWPhu4/huqzDgcOyY+G7p+G6rMOBxrDhu6Fj4bqwceG7leG6tmNw4buH4bupY8awcHHhu5XGsGPhu6dx4bub4bq24bqxYmPhuq7EgsOyOWJw4bqw4bqw4bqiw6MvL8Wpw7Xhu41x4buH4bqxw7Phu4fhu6nhuqJw4bq24bqwcOG7qeG6scSQxrAv4buN4buH4bqw4buHccWp4buH4buhw7Xhuq4vZWTEkWVk4bq7L+G7qcSCceG7oXHGsOG7h+G7py9xxanhu4fhu6HDteG6rsOqw6rhurvhurvDqcSRX8SR4bqxw7nhuqLhu6FiY+G6ruG6sOG6uOG7p8O1OWJFceG7jeG6sHDDo2PhurtkZOG6osOJxINjcMO1ceG7oXDhurDDo2PDqcOp4buB4bqiw4nEg2LhuqXDoi/hurDhu43huqXDoi/hurDEguG6pcOi4bqwxILhuqXDouG6sOG7jeG6pcav4buX4bq2Y8Wp4buL4bqwY+G7j+G6rEHGsOG7oWPDsuG6qMaw4buhY8Oy4burY+G6sHDhu51j4buhceG6suG6omPhu6FxZ8WpY+G7j+G6rMOBw7Jj4bun4bqsw4HGsOG7oWPhurBx4buV4bq2Y3Dhu4fhu6ljxrBwceG7lcawY+G7p3Hhu5vhurbhurHDoi/hurDhu43huqXDoi/hurDEguG6pcOiL+G6sOG7h8Oz4bunw7XhuqXDouG6omPDsuG7p+G7h+G6ruG6rjli4bqiw5Phu6nhu43hurhi4bql4buO4budY+G7p23huqJjxal3Y3BzxrBw4bqvY8Oy4buDw7JjxrBw4buFY8aw4buhcHHhu5XGsGPDsuG6qOG6tmPhuq5DY+G7jcOCxrDhu6Fj4bqueGPhu6dx4bub4bq2Y+G6sHDhurZj4buP4bqsw4HDsmPhurDhuqpj4bq74bq94bq5w6ljw7Jw4bq24bq44buXxrBjw4nDtWPhu49xY+G6sMSC4buVxrBjxalmxrDhu6Fj4bun4bqs4bu5cWPhu6Fx4buH4bupY+G6sHB3xrDhu6Fjw7LhuqThu4djxajhu4DhurFjw5Lhu4PDsmPhuq54Y+G7p3Hhu5vhurZj4buP4burY8OycOG7qWPDs3Hhu5fhurBj4bqwcHfGsOG7oWPhurBxxrBjxJDGoWPDsuG7g8OyY+G7p+G7ueG6omPhuqJw4bqkY+G6sMSC4buVxrBjw4nhu4dj4bunw71jxJDhu4Vjw7Lhu4PDsmPhu6fhu6lmcWPhuqJw4bqs4bu3xrDhu6Fj4bqwceG7m8awY8SQbcawY8OycOG6tuG6uOG7ncawY+G6sMSC4buVxrBj4buP4bqsQcaw4buh4bqxw6Iv4bqi4bqlw6LhuqJjw7Lhu6fhu4fhuq7huq45YuG6osOT4bup4buN4bq4YuG6pTrhuqpjxrBwRMaw4buhY+G7jURj4bulceG7m8awY3Dhu61j4buPaGPhu6dt4bqiY8SC4buHY8Wpd2Nwc8awcGPhurDhu6nhu4PGsGNw4butw7JjxJDhu4VjxJBx4bubw7Jj4bqicGrGsGPhurByw7JwY8Wpd2Nwc8awcGPEguG6suG6sGPEguG7h2Phu6Xhu5fhurBj4bun4bq2bcaww6Njxq/hu5fhurZjxanhu4vhurBj4buP4bqsQcaw4buhY8Oy4bqoxrDhu6Fj4bqzw7PDrMaw4buhY+G7p+G7qWZxY8awcELhu4dj4buP4bqsQcaw4buhY+G7j+G7i8OyY8OzceG7m+G6sGNw4bup4buLw7Jjw7Phu5Vj4bqwd8aw4buh4bq1Y+G6sHBzY8Oy4burY+G6sHDhu51j4buhcWfFqWPDs+G7ueG6sGPhu4/huqzDgcOyY8Opw6FjxrBwceG7lcawY+G7p3Hhu5vhurZj4bqwceG7leG6tmPhurBww4LhurHDoi/huqLhuqXDouG6omPDsuG7p+G7h+G6ruG6rjli4bqiw5Phu6nhu43hurhi4bqlP8OAY+G7jcO6Y+G6sHHhu5fhurBj4bulceG7m8WpY+G7j+G6rMOBw7JjxrBwceG7lcawY+G7p3Hhu5vhurZjxJBzY+G7oXFnxalj4buP4bqsw4HDsmPhu4/DvWPhuq5q4bq2Y8Oy4bqk4buHY8Oz4buDxrBwY8OJw7Vjw7ThuqJjw4nhurZ4xrDhu6Fjxanhu4vhurBj4buP4bqsQcaw4buh4bqxYzpww7Xhu6ljcOG7reG6r2Phu4/DvWPhu6fhurLGsGPhu43hu6lj4bqu4bqow7Jjw7ThuqJj4buN4bq0Y8SCa+G6sGPGsHDhu69jw7LhuqbGsOG7oWPDs+G6tsO9w7Jj4bqicOG6rOG7t8aw4buhY+G6sHHhu5vGsGPhu49xY+G7p2ZxY+G6onBncWPhurBw4bqs4bu3xrDhu6Fjw4nhurbhurjhu5XGsGPigJzhu6fDteG7qWPhu414w7LigJ3huq9j4buNb8awY+G6sOG7uXFj4bqwceG7leG6tmNw4buH4bupY8awcHHhu5XGsGPhu6dx4bub4bq2Y8awcHHGoeG6tmNw4bu3xrDhurFjUHHhu5vhurZj4bqoxrDhu6Fj4buP4burY8Oy4bqmxrDhu6Fj4bqw4bqs4bu3xrDhu6Fj4bqwQmPGsHDhuqxjxrDhu6HhuqxBcWPhu49xY8Ozw71j4buPcWPhurDEguG7lcawY8Oy4buD4bqwY+G6ruG7mWPDsmfFqWPhurBwa+G6uGPhu6Vw4burY+G7pXBpxrBjcOG7t8awY+G7pXBxY+G7j3Fj4bqwxILhu5XGsGPhu4/huqxBxrDhu6FjxrBwQuG7h+G6scOiL+G6ouG6pcOi4bqiY8Oy4bun4buH4bqu4bquOWLhuqLDk+G7qeG7jeG6uGLhuqUic2PFqXdjcHPGsHBj4bqw4bup4buDxrBjcOG7rcOyY+G7j+G6rMOBw7Jjw4lq4bq4Y+G7jULGsOG7oWPhurDhuqpj4bqicGrGsGPhurByw7JwY+G6rnhj4bunceG7m+G6tmPDsuG6pOG7h2Nw4buFxrDhu6FjxrDhu6Fwc8awY8OD4bq2aMaw4buhY+G7j+G6rEHGsOG7oeG6r2Phu6fhu7nhuqJj4bqwxILhu5XGsGPhuqJw4bqkY8Ozw6zGsOG7oWPGsHBxxqHhurZjxJBt4bqwY+G7p3Hhu5vhurZj4bulcOG7g8OyY8awcOG7h+G6tmPGsOG7lcawY+G7peG7l+G6sGPhu6fhurZtxrBj4buP4bqs4buHY8SC4buHY+G7p+G7hWPEgmvhurBj4buP4buDxrDhu6Fj4bqwccawY8OybeG6uOG6scOiL+G6ouG6pcOi4bqiY8Oy4bun4buH4bqu4bquOWLhuqLDk+G7qeG7jeG6uGLhuqU6cMO14bupY8Oy4buDw7Jj4bqw4buDw7Jj4buhcWfhuq9jxanhuqjDsmPhu4/DvWPhurBx4buX4bqwY+G7pXHhu5vFqWPDsuG7q2PEkOG7k2Phu6fhu4VjxrBw4buvY+G6s8OycHVjw6nDoeG6tWPGsHDhuqzGsOG7oWPGsOG7l+G6tmPhurByxrBwY+G6sMSC4buVxrBj4bqw4bup4buFxrBjxrDhuqzhu7nDsmPFqOG7gOG6r2PGsOG7q2Phuq7hu5lj4bqw4bqs4bu3xrDhu6Fj4buP4bqs4bu3xrDhu6FjZcOqw6lj4bqwxIJx4bub4bq2Y8Oz4buHxILDteG7p2Phu41s4bq2Y+G6sHB3Y8Wp4bu1cWPGsGnFqeG6r2PhurDEgnRj4buhceG7g2Phu6FsxrBjxJHhurvhuq/hur1j4bqw4bq+Y+G7j3fhu6fhu4fhuq9j4bqwcHNjw7Lhu6nGsGPhuq54Y+G7j+G7q2Phu6Vwd8aw4buhY8awcOG7r2PDsnDhurLhurBjxrDhu4Xhu6nhurHDoi/huqLhuqXDouG6omPDsuG7p+G7h+G6ruG6rjli4bqiw5Phu6nhu43hurhi4bqlOnDDteG7qWMiccO14bqwxrDhu4fFqcaww7XhurDDoi/huqLhuqU=