Giải Nobel Kinh tế 2016 dành cho nghiên cứu về “lý thuyết hợp đồng”
Ngày 10-10, Giải Nobel Kinh tế 2016 đã được trao cho các nhà kinh tế học Oliver Hart và Bengt Holmström vì những đóng góp trong nghiên cứu về "lý thuyết hợp đồng".
w4JQxJBDw5Lhu6bhu4Y/P+G7uUIlcVE64bumw5VC4bqk4buDUUdRQ2vhu6jDk8OV4bumQ+G7iVHGr1BDOuG7lkNFRMSQ4bq8Q+G7jOG7hMavUEPDklDhu6hDxq/hu6BQUeG7lMavQ8OSPjtDIsagQ0Lhu6YyQzpQOzHhu5Y6Q1AjJUPhu45Zxq/hu6BCw4IvUMSQ4bqkw4I64buGw5Phu6bDlUM/OjHhu6bDleG7uULFqOG7hibhu6BRxq/Dg0UlMEPhu4Y7OuG7qELhuqTDgjom4bqkw4I64buM4bqkw4IvOuG7jOG6pMOCLzom4bqkw4I6JuG6pMOCOuG7jOG6pMOCUcWo4bugQ8OS4bum4buGPz/hu7lCxq/hu4xfUcWo4bugQkM/JsOS4bu5QlA6OiXDgy8vICAg4bqwxq9Q4buGxq/hu4zhu4bGr+G6sOG7qCbhu6DhurAixq8vw5Lhu4zGry8ixq8vxajDleG7jFHhu4Yv4bukRS9ROsOVxag/Lz8mw5Ivw4lE4buAw4kv4bq+4bq44bue4buA4buMw5Xhu55FxJDDicSQw4nDisSQw5LhurjDk0TDk+G6uMOVw4rhu57EkMOSRcOJw4rhurzDieG7gMOV4bqww5kl4bugQkM/OjHhu6bDleG7uULFqOG7hjAtIFHhu4w6UMODxJBERMOBxIIl4buG4buM4buMUcav4bugLcOT4buoOjrhu6jFqMOD4bq6JTDEgkLhuqTDgi8l4bqkw4IlQ8OS4bum4buGPz/hu7lCJeG7hcOV4buG4buMQuG6pGtQ4buEQ+G7pFHGr1BDOuG7lkNQ4busw5JDbOG7plEiw5UmQ+G7heG7hiY64bqww4IvOuG7jOG6pMOCLzom4bqkw4I6JuG6pMOCLzom4bqkw4I6JuG6pMOCOuG7jOG6pMOCJeG6pGvhu6Dhu4QxQ8SQRC3EkEThuq5D4buDUUdRQ2vhu6jDk8OV4bumQ+G7iVHGr1BDOuG7lkNFRMSQ4bq8Q+G7jkhD4buOPCPDkkM6JuG7huG7qEPDklDhu6hDw5Lhu4LDkkPGr1Dhu4RD4bukUcavUEM64buWQ1Dhu6zDkkNs4bumUSLDlSZD4buF4buGJjpDIuG7hEPhuq3Dlcav4bugOkPhu4Xhu6jhu6bFqD86JsO2xahDIlNDxq9QXcav4bugQ+G7juG7qsav4bugQ+G7oOG7qiVDOibhu6jGr+G7oEPGr+G7oFBR4buUxq9Dw5I+O0MixqBD4oCc4bumMkM6UDsx4buWOkNQIyVD4buOWcav4bug4oCd4bqww4IvJeG6pMOCLzrhu4zhuqTDgi86JuG6pMOCOibhuqTDgjrhu4zhuqTDgiVDw5Lhu6bhu4Y/P+G7uUIl4bqt4buo4buMMULhuqRxUMOV4buoQ+G7sVHhu5rGr0Phu4Xhu4TGr0Phu6ZKxahD4buJUOG7qOG7hkNQ4busw5JD4buF4buo4buExq/hu6BD4bugUeG7hkNxUCExQ2JR4bucxq/huq5D4buk4buWOkMqO0dDxq/hu6BQUeG7lMavQ8OSPjtDw5Io4buGQ1Dhu4ZRQ8avUOG7hEPhu6RRxq9QQzrhu5ZDUOG7rMOSQ+G7jkhD4bug4buqJUMlUEzGr0PGr0rGr+G7oEPDkuG7huG7qEPGr1BNxq9DOlA+w5JDIsagQ8OS4buCw5JDIkvGr0Phu47GoEPGr1A8QzomR0Phu6Y84bu2xq/hu6BD4buMfeG7hkM6JuG7lMavQ1BR4buaO0MqO0dDw5JXxq/hu6BDIlHhu5rDkkPDklDhu6hDw5Lhu4LDkkPhu6BR4buCxahD4buOWMOSQ+G7jlHGoDtDUOG7hMavUOG6sEPhuqnhu7ZDKjvhu4bGr0PGr+G7hDFDw5Ipxq/hu6BDw5JXxq/hu6BDw5NY4bquQyVQTMavQzpQPD3Gr+G7oEPDklDhu6hD4buDUUdRQ2vhu6jDk8OV4bumQ+G7iVHGr1BDOuG7lkNFRMSQ4bq8QzomVEPhu6BR4buCQ+G7pFDhu6hHxq/hu6BD4buAReG6vkPGr+G7oFBTxq9DcnDhuqtDIuG7hEPhu6RQ4buIxq/hu6BD4buOVMavUOG6rkPDklfGr+G7oEM6JlPGr1BDxq/hu6BQUeG7lMavQ8OSPjtDw5Io4buGQ8OS4buCw5JDxq9Q4buEQ+G7pFHGr1BDOuG7lkNQ4busw5JDOibhu5TGr0Phu45IQ+KAnDpG4buoQybhu4ZDxq/GoMavQzpHxq/hu6BDOiZRQzpQPsOSQ8OSUOG7qEMiUeG7msOSQzpQUeG7ljpD4buk4buWQ8OS4buCw5JDw5JQUsavUEM/4buCw5JQQyLhu4RDOlDhu5xDw5JQ4buWQzom4buoxq/hu6BDxq9QUcagO0Phu6bDmsavUEMifcOS4oCd4bqww4IvJeG6pMOCJUPDkuG7puG7hj8/4bu5QiXhuq3hu6jhu4wxQuG6pGvhu6Dhu6jhu4RRQybhu4bhuq5D4buxUeG7msavQ+G7heG7hMavQ+G7pkrFqEPhu4lQ4buo4buGQ1Dhu6zDkkPhu4Xhu6jhu4TGr+G7oEPhu6BR4buGQ3FQITFDYlHhu5zGr0PDkinGr+G7oEPGr1BLxq9DxahGxq9Q4bquQ8avxqDGr0Phu6RRxq9QQzrhu5ZDUFHhu5rGr0Phu45GUUPhu448I8OSQ8OSSztDOkbhu6hDw5M9UUMiV0M/WEPDkuG7gsOSQ1AjJUPhu45Zxq/hu6DhurBD4bqp4buCw5JDw5JXxq/hu6BDw5IhQ+G7pjJDOlA7MeG7ljpDxajhu4RDUOG7hlFDxq9Q4buEQ+G7pFHGr1BDOuG7lkNQ4busw5JDbOG7plEiw5UmQ+G7heG7hiY6QyLhu4RD4bqtw5XGr+G7oDpD4buF4buo4bumxag/OibDtsWoQz/hu4LGr+G7oEM6RuG7qEMm4buGQ+G7jkhD4bugUSwlQ8OSUCzGr+G7oEM64buGQ1BR4bucO0NQ4bu2xq9DIsagQ8OS4buCw5JDUCMlQ+G7jlnGr+G7oEMi4buEQzrhu7JDw5JQPsOSQ+G7pFHGr1BDOuG7lkM6JuG7qMav4bugQzpQfcOSQzrhu5bhuq5Dw5Ipxq/hu6BDxq9QPEPDkuG7gsOSQ8OSRsWoQ8OTTzFDOlHGoMWoQzrhu4TGr+G7oEM6JuG7qMav4bugQyo74buCQzomU8avUEM6UFHhu5Y6Q+G7pOG7lkNQIyVD4buOWcav4bug4bqww4IvJeG6pMOCJUPDkuG7puG7hj8/4bu5QiXhuq3hu6jhu4wxQuG6pOG7g1Hhu4Lhu6hDPzxDbOG7plEiw5UmQ+G7heG7hiY64bquQ+G6vOG6vkM6O+G7slHhuq5D4bum4buEQ8avUOG7hEPhu6RRxq9QQzrhu5ZDUOG7rMOSQ+G7oFjDkkM3xq9Q4bquQ1BR4buaxq9D4buO4buGxq/hu6BD4bugUUfGr+G7oEPhu4xGMUMi4buEQ8av4bugUFHhu5TGr0PDkj47QyLGoEPhu6RRxq9QQzrhu5ZDOkZRQzomPEDGr+G7oENiRlFDUOG7rMOSQ+G7heG7hiYi4buGJuG7jOG6sEPhuqnhu4LDkkPGr+G7oFBR4buUxq9Dw5I+O0PDkijhu4ZDV8av4bugQ+G7heG7hiY6QzpNJUM6JjvGr+G7oEMi4buE4buoQz99QyVQSsavQ8OSUFHhu4ZDKjsxxqDGr0Phu6Z9w5JDOibhu6jGr+G7oEPDkuG7gsOSQ8WoWFFDKjvhu4bGr0NQ4buaQ+G7pFHGr1BDOuG7luG6rkPDk+G7huG7qEPhu6BZxahDw5Lhu4LDkkNQIyVD4buOWcav4bug4bqwQ+G7jcav4bugQ8OSKcav4bugQzpTxahDUFHhu5w7QyLGoEPDkuG7gsOSQzrhu4LDkkPhu47Dncav4bugQ8OSKOG7hkMiUeG7msOSQyVQSsavQ8OSUFHhu4ZDKjsxxqDGr0Phu6Z9w5JD4buOWFFDIuG7uFFDw5Lhu7ZDw5JLO0Mi4buEQ1Dhu6hGOkPhu47Dncav4bugQzrhu4RRQ8OSUFLGr1BDw5Io4buGQ+G7jOG7qOG7hsavUEPGr+G7oFBR4buaJeG6sMOCLyXhuqTDgiVDw5Lhu6bhu4Y/P+G7uUIl4bqt4buo4buMMULhuqTDglHFqOG7oENQw5VR4bugUDrhu7lC4buGOzrhu6hCQz8mw5Lhu7lCUDo6JcODLy8gICDhurDGr1Dhu4bGr+G7jOG7hsav4bqw4buoJuG7oOG6sCLGry/DkuG7jMavLyLGry9Rxajhu4bhu6DDlT8vRUTEkOG6vC86UOG7hsavUDom4buGL8SQRC/EkMOBReG6vkXDgUXhu4DhurDDmSXhu6BCQz86MeG7psOV4bu5QsWo4buGMC0gUeG7jDpQw4PEkEREw4HEgsWo4buGMC1Qw5VR4bugUDrDg+G6vkQiUMSCQuG6pMOCJeG6pGtQ4buEQ+G7pFHGr1BDOuG7lkNQ4busw5JD4bqtw5XGr+G7oDpD4buF4buo4bumxag/OibDtsWo4bqww4Il4bqkcSbhu6jGr+G7oEPhu6RQUUPhu47hu6rhuq5D4buDUeG7guG7qEM/PEPhuq3Dlcav4bugOkPhu4Xhu6jhu6bFqD86JsO2xajhuq5D4bq8w4pDOjvhu7JR4bquQ+G7puG7hEPGr1Dhu4RD4bukUcavUEM64buWQ1Dhu6zDkkNqNkPhu6BYw5JD4bujUEzGr0PEqeG7hsav4bqwQ+G7jcav4bugQ1BR4buaxq9D4buO4buGxq/hu6BD4bum4buEQ+G7oFHhu4Lhu6hDPzxD4bukUcavUEM64buWQzpGUUM6JjxAxq/hu6BDamZx4bqwQ+G7jcav4bugQzpNJUM6JjvGr+G7oEPGr+G7oFBR4buUxq9Dw5I+O0MixqBD4bumMkM6UDsx4buWOkNQIyVD4buOWcav4bugQyLhu4RDPDtD4buOSFHhuq5Dw5Phu4bhu6hD4bugWcWoQyo7R8avQzomVOG6rkPDk1lRQzpQPEDGr+G7oEMi4buEQzrhu4JRQ8OS4bu2Q8OSSztD4buM4buo4buGxq9QQ8av4bugUFHhu5ol4bqwQ2vhu6Dhu6jhu4RRQybhu4bhuq5DV8av4bugQ8OSKcav4bugQ+G7juG7qsav4bugQ+G7oOG7qiVD4bum4bu4xq9DIuG7hOG7qEPGr1Bdxq/hu6BDxq/hu6BQUeG7lMavQ8OSPjtD4bumMkM6UDsx4buWOkMixqBDJihRQybhu6hDOibhu6jGr+G7oEPhu6RRxq9QQ+G7jOG7qOG7hsavUOG6rkPDkuG7gsOSQyJLxq9D4buOxqBDOlDhu4bGr1BD4bukUOG7qEfGr0Mi4buEQzpQVEM6JjxAxq/hu6BDOuG7hFFDw5JQUsavUOG6sMOCLyXhuqTDgiVDw5Lhu6bhu4Y/P+G7uUIl4bqt4buo4buMMULhuqThu4lRxq9QQzrhu5ZD4bum4buEQ1BGxq/hu6BDxaghw5JDOlA+Q8avScWoQzom4buoxq/hu6BDw5Lhu4LDkkPhu6bDmsavUEMifcOSQ+G7jjwjw5JDIlHGr1BD4buM4buGxq9QQzpGUUPhu4NRR1FDa+G7qMOTw5Xhu6bhurBDai7hu4ZD4buDUUdRQ2vhu6jDk8OV4bumQ0VExJDhurxD4buOSEPDklBSxq9QQzpQPsOSQ+G7jjwjw5JD4bukUD1RQ+G7jsOdxq/hu6BDIuG7hOG7qEPGr+G7oOG7hDFDw4ktxJBEQyLhu7hRQyJR4buaw5JDOibhu4bhu6hDw5Lhu4LDkkPhu6BRR1FDa+G7qMOTw5Xhu6ZDIsagQ3ZDP1HGr1Dhuq5D4buxTTpD4bumMuG6rkPhu4Xhu6rhu4ZDUOG7rMOSQyLhu4RD4buF4buw4buGQ8OTU8avUOG6sMOCLyXhuqTDgiVDw5Lhu6bhu4Y/P+G7uUIl4bqt4buo4buMMULhuqThu4NRR1FDa+G7qMOTw5Xhu6ZD4buJUcavUEM64buWQ0VExJDhurpD4buOPCPDkkM6JuG7huG7qEPDklDhu6hDxq9Q4buEQ+G7pFHGr1BDOuG7lkNQ4busw5JDN8av4bugOz9D4bqrw5Xhu4Y64buoxq9DIlNDxq9QXcav4bugQ8av4bugUFHhu5TGr0PDkj47Q8OSKOG7hkNXxq/hu6BDOibhu6jGr+G7oEMiS8avQ+G7jsagQzpR4buUO0Phu4wuxq/hu6Dhuq5DOlPGr1BDOiZGxq/hu6BDxq/hu6BQw6jhu6hD4buO4buqUUMi4buEQyVQLMOSQ+G7piNR4bqww4IvJeG6pMOCJUPDkuG7puG7hj8/4bu5QiXhuq3hu6jhu4wxQuG6pHFQw5Xhu6hDa1BKxq9D4buMSsavw4IvJeG6pMOCLzrhu4zhuqTDgi86JuG6pMOCLzrhu4bDk+G7psOV4bqkw4Il4bqk